Objectives

- Define body composition and understand its relationship to assessment of recommended body weight.
- Explain the difference between essential fat and storage fat.
- Describe various techniques used to assess body composition.
- Be able to assess body composition using skinfold thickness and girth measurements.
- Understand the importance of body mass index (BMI) and waist circumference in the assessment of risk for disease.
- Be able to determine recommended weight according to recommended percent body fat values and BMI.
- Learn how to measure body composition.
- Assess your risks for potential disease.

Introduction

- Body composition
 - Percent body fat
 - Proportion of the fat on the body compared to overall weight.
 - Lean body mass
 - Nonfat component
- Recommended body weight
 - A fat distribution pattern that is not associated with higher risk for illness.
 - Best determined based on the percent of body fat and lean tissue
Introduction

- **Overweight**
 Excess amount of weight against a given standard, such as height or recommended percent body fat

- **Obesity**
 Excessive accumulation of body fat, usually at least 30% above recommended body weight
 - Some individuals are heavy because of a large amount of muscle.
 - Some individuals are light but have a substantial amount of body fat.

Essential and Storage Fat

- Total fat is determined by:
 - **Essential fat**
 - Needed for normal physiologic function.
 - Found in muscles, nerve cells, bone marrow, intestines, heart, liver, and lungs.
 - Constitutes about 3% of body weight in men and about 12% of body weight in women
 - **Storage fat**
 - Stored in Adipose tissue under skin and around organs
 - An insulator to retain heat.
 - An energy substrate for metabolism.
 - Padding against physical trauma to the body.

Typical Body Composition of an Adult Man and Woman

- Similar amounts of storage fat in men and women:
 - Men tend to store fat around the waist ("android").
 - Women tend to store fat around the hips and thighs ("gynoid").
Techniques to Assess Body Composition

- Dual Energy X-ray Absorptiometry (DEXA)
 - Uses very low-dose beams of X-ray energy
 - Research and medical facilities
 - SEE ± 1.8 percent

- Hydrostatic weighing
 - Most other tests compare to this one
 - A person’s "regular" weight is compared with a weight taken underwater
 - Drawbacks?
 - SEE ± 0.5 percent

- Air displacement
 - Bod Pod
 - Computerized pressure sensors determine the amount of air displaced by the person inside the chamber.
 - Not population specific
 - SEE ± 2.2 percent
Techniques to Assess Body Composition

- Skinfold thickness
 - Relation of subcutaneous fat and total body fat
 - SEE ± 3.5 percent
 - Should be taken by the same technician and at the same time of day

- Girth measurements
 - Administered using a measuring tape to assess the circumference of various body parts.
 - Women—the upper arm, hip, and wrist
 - Men—the waist and wrist
 - May not be valid for athletic individuals or for people who can be classified visually as thin or obese.
 - SEE ± 4 percent

Body Fat Assessment According to Girth Measurements

For Women:
1. Measure the upper arm, hip, and wrist.
2. Use the following equations to calculate body fat percentage:
 - Upper arm: \(B = 0.49 \times A - 4.12 \)
 - Hip: \(B = 0.46 \times H - 3.96 \)
 - Wrist: \(B = 0.49 \times W - 4.97 \)

For Men:
1. Measure the waist and wrist.
2. Use the following equations to calculate body fat percentage:
 - Waist: \(B = 0.46 \times W - 3.96 \)
 - Wrist: \(B = 0.49 \times W - 4.97 \)

Example:
- Upper arm = 6 in
- Hip = 38 in
- Wrist = 6 in
- Waist = 36 in

Body Fat Percentage = \(B \)
Techniques to Assess Body Composition

- Bioelectrical impedance
 - Based on the principle that fat tissue is a less efficient conductor than lean tissue of electrical current.
 - Accuracy is questionable
 - 10 percentage points
 - Hydration and body temp can affect the results

Body Composition Classifications According to Percent Body Fat

<table>
<thead>
<tr>
<th>Age</th>
<th>Underweight</th>
<th>Excellent</th>
<th>Good</th>
<th>Moderate</th>
<th>Overweight</th>
<th>Obese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11-18</td>
<td>13.1-17.0</td>
<td>17.1-22.8</td>
<td>22.1-27.0</td>
<td>27.1-32.0</td>
<td>>32.1</td>
</tr>
<tr>
<td></td>
<td><19</td>
<td>13.1-18.0</td>
<td>18.1-23.0</td>
<td>23.1-28.0</td>
<td>28.1-33.0</td>
<td>>33.1</td>
</tr>
<tr>
<td></td>
<td>20-29</td>
<td>15.3-20.0</td>
<td>20.1-25.0</td>
<td>25.1-30.0</td>
<td>30.1-35.0</td>
<td>>35.1</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>17.5-22.0</td>
<td>22.1-27.0</td>
<td>27.1-32.0</td>
<td>32.1-37.0</td>
<td>>37.1</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>19.7-24.0</td>
<td>24.1-29.0</td>
<td>29.1-34.0</td>
<td>34.1-39.0</td>
<td>>39.1</td>
</tr>
<tr>
<td></td>
<td>≥50</td>
<td>21.9-26.0</td>
<td>26.1-31.0</td>
<td>31.1-36.0</td>
<td>36.1-41.0</td>
<td>>41.1</td>
</tr>
</tbody>
</table>

BMI (Body Mass Index)

- Determine thinness and excessive fatness
 - Height and weight to estimate fat values
- Most widely used measure to determine obesity and overweight
 - Weight (lb.) x 705 ÷ Height (in.)²
- Disease risk
 - Lowest risk 22-25 range
Disease Risk According to Body Mass Index (BMI)

Table 4.7 Disease Risk According to Body Mass Index (BMI)

<table>
<thead>
<tr>
<th>BMI</th>
<th>Disease Risk</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td><18.5</td>
<td>Increased</td>
<td>Underweight</td>
</tr>
<tr>
<td>18.5–21.99</td>
<td>Low</td>
<td>Acceptable</td>
</tr>
<tr>
<td>22.0–24.99</td>
<td>Very Low</td>
<td>Acceptable</td>
</tr>
<tr>
<td>25.0–29.99</td>
<td>Increased</td>
<td>Overweight</td>
</tr>
<tr>
<td>30.0–34.99</td>
<td>High</td>
<td>Obesity I</td>
</tr>
<tr>
<td>35.0–39.99</td>
<td>Very High</td>
<td>Obesity II</td>
</tr>
<tr>
<td>≥40.00</td>
<td>Extremely High</td>
<td>Obesity III</td>
</tr>
</tbody>
</table>

Mortality Risk Versus Body Mass Index (BMI)

- Compared with a BMI between 22-25:
 - Mortality rates for those with a BMI between 25 and 30 (overweight) are up to 25 percent higher.
 - Mortality rates for those with a BMI above 30 (obese) are 50 to 100 percent higher.
 - The risk for premature illness and death increases for individuals who are underweight.

- Weakness of BMI
 - cannot differentiate between muscle and fat therefore doesn’t work well with athletes

- Storage of fat affects disease risk
 - Android obesity
 - Apple shape
 - Fat around organs
 - Higher risk for Heart disease, Hypertension, Type 2 diabetes, and stroke
 - Gynoid obesity
 - Pear shape
 - Measured at the level of the umbilicus

Waist Circumference

Visceral Fat Compared to SBC or RTP Fat for Disease Risk
Disease Risk from WC and BMI

Table 4.8 Disease Risk According to Waist Circumference

<table>
<thead>
<tr>
<th>Men</th>
<th>Women</th>
<th>Disease Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 35.5</td>
<td>< 35.5</td>
<td>Low</td>
</tr>
<tr>
<td>35.5-40.0</td>
<td>35.5-40.0</td>
<td>Moderate</td>
</tr>
<tr>
<td>>40.0</td>
<td>>40.0</td>
<td>High</td>
</tr>
</tbody>
</table>

Table 4.9 Disease Risk According to Body Mass Index (BMI) and Waist Circumference (WC)

<table>
<thead>
<tr>
<th>Classification</th>
<th>BMI (kg/m²)</th>
<th>Men WC (100 cm)</th>
<th>Women WC (100 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>18.5-24.9</td>
<td>Very low</td>
<td>Increased</td>
</tr>
<tr>
<td>Overweight</td>
<td>25.0-29.9</td>
<td>Increased</td>
<td>High</td>
</tr>
<tr>
<td>Obesity Class I</td>
<td>30.0-34.9</td>
<td>High</td>
<td>Very high</td>
</tr>
<tr>
<td>Obesity Class II</td>
<td>35.0-39.9</td>
<td>Very high</td>
<td>Extremely high</td>
</tr>
<tr>
<td>Obesity Class III</td>
<td>>40.0</td>
<td>Extremely high</td>
<td>Extremely high</td>
</tr>
</tbody>
</table>

Determining Recommended Body Weight

Example:

- **Sex:** Female
- **Age:** 19 years
- **FP:** 30% (.30)
- **DFP:** 22% (.22)
- **BW:** 160 lbs.

1. **FW** = BW x %F
 - FW = 160 x .30 = 48 lbs.

2. **LBM** = BW - FW
 - LBM = 160 - 48 = 112 lbs.

3. **RBW** = LBM ÷ (1.0 - DFP)
 - RBW = 112 ÷ (1.0 - .22)
 - RBW = 112 ÷ .78 = 144 lbs.

4. **Desired Weight Loss (DWL)**
 - DWL = BW - RBW
 - DWL = 160 - 144 = 16 lbs.
Importance of Regular Body Composition Assessment

- Fat gain after 25 yrs
 - 1 to 2 lbs weight gain per year
 - ½ lb lean tissue lost per year
- Body composition reassessment periodically because of the effects of negative caloric balance on lean body mass.